Class 03 – Text Functions (Advance) | DECLARE, NVARCHAR, SET | Conditional Functions (Basic)
Data Science (Batch-01) – Session 03
02:03:56
Class 04 – Conditional Functions (Advance) | CAST Function
Data Science (Batch-01) – Session 04
01:56:00
Class 05 – SQL Theory (DBMS vs RDBMS, SQL Server, Instances, Databases, Data Security) | Data Normalization | Fact vs Dimension Tables | Relationships & Keys | Star vs Snowflake Schema | ER Diagrams | JOINS Theory
Data Science (Batch-01) – Session 05
02:17:54
Class 06 – SQL JOINS | VIEWS | UNION & UNION ALL | Subqueries | Common Table Expression | CRUD Operations (INSERT, UPDATE, DELETE) | Window Functions
Class 17 – Data Visualization (Matplotlib & Seaborn) | Pakistan Covid-19 Case Study
Data Science (Batch-01) – Session 17
02:06:24
Class 18 – Python Visualization: Matplotlib (Line, Bar, Histogram, Pie, Scatter) | Analysis with Pandas & Matplotlib | Seaborn Visuals (BoxPlot, BarPlot, ViolinPlot, PairPlot, Heatmap) | Covid-19 Case Study (Pakistan)
Data Science (Batch-01) – Session 18
02:01:48
Class 19 – Project: Car Price Prediction – Analyzing Data and Predicting Car Price using Pandas, NumPy, Matplotlib, SeaBorn, SkLearn (Data Manipulation and Pre-processing, Visualizing Dataset) | ExtraTreesRegressor | Random Forest Regressor
Data Science (Batch-01) – Session 19
01:55:49
Class 20 – Project: Car Price Prediction (Advance Visualization) | Prediction Model Training | Hyperparameter Tuning | Predictions (RandomizedSearchCV)
Data Science (Batch-01) – Session 20
02:03:30
Class 21 – Project: Car Prediction (Finalizing) | Natural Language Processing (NLP): Introduction | Tokenizing and Basic Terminology | Corpus and Documents | Vocabulary | Words
Data Science (Batch-01) – Session 21
02:06:14
Class 22 – Roadmap to Natural Learning Processing (NLP) – Discussing Theories, Concepts and Practical Implications | Tokenizing and Basic Terminology | Corpus and Documents | Vocabulary | Words
Data Science (Batch-01) – Session 22
01:53:50
Class 23 – Tokenization | Stemming (Snowball, RegeXp) | Wordnet Lemmatizer | Stopwords | Parts of Speech Tagging
Data Science (Batch-01) – Session 23
01:48:13
Class 24 – Bag of Words Technique: Tokenization | Vocabulary Building | CountVectorizer | Document–Term Matrix | Stop-Words & N-Grams Impact on Feature Space
Data Science (Batch-01) – Session 24
01:27:19
Class 25 – Named Entity Recognition (NER) using spaCy | Entity Visualization | Custom Entities | Evaluation Metrics (Precision, Recall, F1)
Data Science (Batch-01) – Session 25
02:02:37
Class 26 – SMS Spam Detection: Data Loading & Cleaning | Text Preprocessing | TF-IDF Vectorization | Model Training (Multinomial Naive Bayes) | Evaluation (Accuracy, Confusion Matrix, Report)
Data Science (Batch-01) – Session 26
02:00:37
Class 27 – Initiated ANN Project: Designed Feedforward Architecture (Input → Hidden → Output) | Set Activation & Loss Functions | Compiled Model with Optimizer | Trained with Epochs & Validation Split | Plotted Loss & Accuracy to Track Overfitting
Data Science (Batch-01) – Session 27
01:36:38
Class 28 – Compared ANN vs RNN | Explained Forward & Backward Propagation | Initiated Churn Prediction Project (Environment Setup & Library Installation)
Data Science (Batch-01) – Session 28
01:35:51
Class 29 – ANN Project Continued: Feature Engineering | Concepts of Activation Functions, Dense & Sequential Networks | Initiated Model Training and Parameter Tuning
Data Science (Batch – 01) Session 29
01:42:17
Class 30 – ANN Project Finalization: Built and Trained Churn Prediction Model | Implemented EarlyStopping | Visualized Training with TensorBoard | Managed Logs and Saved Model with Keras (`.h5`)
Data Science (Batch-01) – Session 30
02:02:25
Class 31 – Artificial Neural Network (ANN) Project: Churn Prediction – Finalizing and Deploying the Model
Data Science (Batch-01) – Session 31
01:41:17
Class 32 – ANN Project Deployment: Used Hardcoded Inputs for Prediction | Developed `app.py` for Streamlit Interface | Deployed Project on GitHub and Live Testing Environment
Class 35 – End-to-End LSTM & GRU RNN Project: Next Word Prediction | Data Collection & Preprocessing | Model Building & Training | Evaluation | Deployment
Data Science (Batch-01) – Session 35
01:37:15
Class 36 – Introduction to Generative AI & LLMs | AI vs ML vs DL vs GenAI | Training Processes of ChatGPT & LLaMA 3 | Supervised Fine-Tuning | AI Model Evolution | LangChain Ecosystem Overview | Initiated Virtual Environment Setup
Data Science (Batch-01) – Session 36
01:18:29
Class 37 – LLM App Development with LangChain LCEL | Effective Use of Language Models | PromptTemplates & OutputParsers | Message Structuring (Human/System) | Component Chaining | Clean Output Extraction | Input Simplification with Templates
Data Science (Batch-01) – Session 37
01:31:18
Class 38 – LLM Chatbot with LangChain | Session-Based Conversation Design | Message History & Session IDs | Input Formatting with PromptTemplates | Custom System Messages | Input Variable Handling | Context Retention in Interactions
Data Science (Batch-01) – Session 38
01:20:14
Class 39 –
Data Science (Batch-01) – Session 39
02:00:14
Class 40 –
Data Science (Batch-01) – Session 40
01:14:37
Class 41 –
Data Science (Batch-01) – Session 41
01:52:46
Class 42 –
Data Science (Batch-01) – Session 42
02:05:31
Power BI (Class 01) – Introduction of Power BI | Basics of Power Query | ETL | Basic Transformations in Power Query
Session 01 – 03
02:22:23
Power BI (Class 02) – Text Functions | Number Functions | Basic Group By | Column Profiling, Quality and Distribution
Session 01-03
02:03:25
Power BI (Class 03) – Date Tools | Categorical vs Time Series Analysis | Conditional Column | Column from Example | Orders of Operations
Session 01
02:11:35
Power BI (Class 04) – Merge Queries | Appending Queries | Appending by Folders | Advanced Group By | Parameters
Session 01
01:35:39
Power BI (Class 05) – Data Modelling | Star & Snow Flake Schema | Data Formatting
Session 01
01:36:57
Power BI (Class 06) – DAX – Calculated Columns | Text Functions | Date Functions (Basic)
Session 01
01:47:38
Power BI (Class 07) – DAX – Calculated Columns | Date Functions (Advance) | Logical Functions | Conditional Operators
Session 01
01:51:22
Power BI (Class 08) – Advanced SWITCH Function | MID Function | Measures | Implicit vs Explicit Measures | Filter Context | Filter Flow | Aggregation Functions (SUM)
Session 01
01:54:53
Power BI (Class 09) – Aggregation Functions | Filter Modifier Function (CALCULATE Function)
Session 01
02:07:45
Power BI (Class 10) – CALCULATE | ALL | FILTER | Iterators (SUMX, COUNTX)
Session 01
01:30:15
Power BI (Class 11) – Time Intelligence Functions | IFERROR | IS Functions
Session 01
01:38:50
Power BI (Class 12) – Power BI Visual – Card Visual | Line Chart | Bar Chart
Session 01
01:17:35
Power BI (Class 13) – Power BI Visuals – KPI Charts | Pie and Donut Chart | Table and Matrix Visuals | Filters (Basic to Advanced, TOPN) | Filters on Card Visual
Session 01
02:20:22
Power BI (Class 14) – Power BI Visual – Slicers | Area Chart | Guage Chart | Conditional Formatting | Drill Through and Cross Filter | Multi-Row Card Visual | Tooltips | Buttons | Bookmarks
Session 01
02:06:35
Power BI (Class 15) – Variables in DAX | Iterator Function (RANKX for Dynamic TOPN Rankings) | Advanced RANKX Function | Create Table
Session 01
39:05
Session 02
18:24
Session 03
37:11
Session 04
19:04
Power BI (Class 16) – Maven Roasters: Rounding Functions | Information Functions | Conversion Functions
Session 01
01:36:03
Power BI (Class 17) – CALCULATE Modifier Functions
Session 01
01:54:28
Power BI (Class 18) – Maven Roasters (SELECTCOLUMNS, ADDCOLUMNS, SUMMARIZE, Case Study (SUMMARIZE)) | Relationship Functions | Automatic Calendar Table | COALESE Function
Session 01
58:05
Session 02
54:17
Session 03
50:03
Power BI (Class 19) – Power BI Service | PL-300 Exam Preparation
Power BI Service and PL-300 Exam Class
02:10:40
Class 43 – Tools & Agents in LangChain | Understanding Tools as External Resources | Role of Agents in Deciding Tool Usage & Timing | Strategies to Extend LLM with Real-Time Data | Laying Groundwork for Future Enhancements
Data Science (Batch-01) – Session 43
01:44:44
Class 44 – Creating & Integrating Tools in LangChain | Custom Tools & Dynamic Agent Setup | AgentExecutor Wrapping | Streamlit UI for User Queries & Groq API Key | Defining Multiple Tools | Chain-of-Thought Reasoning | Handling Errors & Infinite Loops
Data Science (Batch-01) – Session 44
01:12:13
Class 45 – Generative AI Project: Chat with SQL DB using LangChain SQL Toolkit & AgentType | Demo Walkthrough | Auto SQL Generation via Agents | SQLite DB Creation & Connection | MySQL Workbench Setup | Table Creation & Data Verification | Preparing Streamlit Integration for Natural Language SQL Querying
Data Science (Batch-01) – Session 45
01:25:46
Class 46 – Chat with SQL DB: End-to-End Streamlit App Development | Developed App Supporting Both SQLite & MySQL | Fixed DB Configuration Function | Integrated User-Selected DB with SQL Agents | Displayed Query & Result in Streamlit Chat UI | Tested Agent-Generated Queries across Both DBs
Data Science (Batch-01) – Session 46
01:48:52
Class 47 – Deployed YouTube & Website Summarization Bot with Streamlit | UI Setup (Sidebar, API Key, Summary Slider) | Content Loading via YouTube/URL Loader | Integrated ChatGroq LLM with PromptTemplate | Ran Summarizer Chain | Added Validation, UX Feedback & Structured Code