Class 05 – Functional Programming (Real-World Function Examples, Lambda Functions, map(), filter()) | Introduction to NumPy (Purpose, Importing Modules for Data Handling)
Class 10 – Completed OOP | Introduction to Streamlit (Basic Widgets & Component Development) | ML Classification Project Deployed on Streamlit
Data Science (Batch-02) Session 10
02:33:35
Class 11 – Streamlit Deployment Setup | GitHub Integration for Project | Live Deployment of ML Project | SQLite3 in Python: Importing, Creating DB & Tables, CRUD Operations (Create, Read, Update, Delete)
Data Science (Batch-02) Session 11
02:18:43
Class 12 – Logging in Python: Practical Use, Multiple Loggers & Real-World Scenarios | Introduction to Flask Framework (WSGI Architecture & Jinja Templates)
Data Science (Batch-02) Session 12
02:21:59
Class 13 – Flask App Structure | HTML Integration in Flask | Handling HTTP Methods: GET & POST
Data Science (Batch-02) Session 13
02:28:50
Class 14 – Flask App Revision (App Skeleton, HTML Integration, GET & POST) | Dynamic URLs with Variable Rules | Jinja2 Template Engine | Feature Engineering: Handling Missing Values
Data Science (Batch-02) Session 14
02:12:46
Class 15 – Data Encoding: Nominal, OneHot, Label, Ordinal, Target-Guided | NLP Roadmap: Tokenization & Text Preprocessing
Data Science (Batch-02) Session 15
02:10:56
Class 16 – Stemming (Porter & Snowball) | Lemmatization | Stopwords Removal | POS Tagging | Named Entity Recognition (NER)
Data Science (Batch-02) Session 16
02:30:47
Class 17 – Name Entity Recognition (NER) | One-Hot Encoding (OHE) | Bag of Words (BOW)